Graded Representations of Current Algebras

Kayla Murray

Interactions of Quantum Affine Algebras with Cluster Algebras, Current Algebras and Categorification

June 4, 2018
Current Algebra

Definition

Let \mathfrak{g} be a simple Lie algebra over \mathbb{C}. The current algebra $\mathfrak{g}[t]$ is the vector space $\mathfrak{g} \otimes \mathbb{C}[t]$ with bracket

$$[a \otimes f, b \otimes g] = [a, b] \otimes fg \quad \forall a, b \in \mathfrak{g}, \ f, g \in \mathbb{C}[t].$$
Current Algebra

Definition

Let \mathfrak{g} be a simple Lie algebra over \mathbb{C}. The current algebra $\mathfrak{g}[t]$ is the vector space $\mathfrak{g} \otimes \mathbb{C}[t]$ with bracket

$$[a \otimes f, b \otimes g] = [a, b] \otimes fg \quad \forall a, b \in \mathfrak{g}, \ f, g \in \mathbb{C}[t].$$

$\mathfrak{g}[t]$ inherits a grading from $\mathbb{C}[t]$.
Current Algebra

Definition

Let \mathfrak{g} be a simple Lie algebra over \mathbb{C}. The current algebra $\mathfrak{g}[t]$ is the vector space $\mathfrak{g} \otimes \mathbb{C}[t]$ with bracket

$$[a \otimes f, b \otimes g] = [a, b] \otimes fg \quad \forall a, b \in \mathfrak{g}, \; f, g \in \mathbb{C}[t].$$

$\mathfrak{g}[t]$ inherits a grading from $\mathbb{C}[t]$.

Let $a_r := a \otimes t^r$.
We can turn any representation of \mathfrak{g} into a representation of $\mathfrak{g}[t]$ in the following manner:

If V is a \mathfrak{g}-module and $z \in \mathbb{C}$, we define a $\mathfrak{g}[t]$-module structure on V by:

$$a_r v = z r a_v.$$

for all $a \in \mathfrak{g}$, $v \in V$, and $r \in \mathbb{Z}^+$. This module is denoted $ev_z V$. $ev_z V$ is an irreducible $\mathfrak{g}[t]$-module if and only if V is an irreducible \mathfrak{g}-module.
We can turn any representation of \mathfrak{g} into a representation of $\mathfrak{g}[t]$ in the following manner:

If V is an \mathfrak{g}-module and $z \in \mathbb{C}$, we define a $\mathfrak{g}[t]$-module structure on V by:

$$a_r.v = z^r a.v \quad \forall a \in \mathfrak{g}, v \in V, r \in \mathbb{Z}_+.$$

This module is denoted $ev_z V$.

$ev_z V$ is an irreducible $\mathfrak{g}[t]$-module if and only if V is an irreducible \mathfrak{g}-module.
We can turn any representation of \mathfrak{g} into a representation of $\mathfrak{g}[t]$ in the following manner:

If V is an \mathfrak{g}-module and $z \in \mathbb{C}$, we define a $\mathfrak{g}[t]$-module structure on V by:

$$a_r . v = z^r a . v \quad \forall a \in \mathfrak{g}, v \in V, r \in \mathbb{Z}_+.$$

This module is denoted $\text{ev}_z V$.

$\text{ev}_z V$ is an irreducible $\mathfrak{g}[t]$-module if and only if V is an irreducible \mathfrak{g}-module.
We are interested in graded representations of $g[t]$.

Definition

A representation V of $g[t]$ is called \mathbb{Z}-graded if it is a vector space which has the following properties:

$V = \bigoplus_{r \in \mathbb{Z}} V[r]$, $g \cdot V[r] \subseteq V[r+s]$, $g \in g$, $r \in \mathbb{Z}$, $s \in \mathbb{Z}^+$.

Each $V[r]$ is a g-submodule of V.

The only \mathbb{Z}-graded evaluation modules occur when $\mathbb{Z} = 0$.
Z-graded g[t]-modules

We are interested in graded representations of $g[t]$.

Definition

A representation V of $g[t]$ is called \mathbb{Z}-graded if it is a vector space which has the following properties:

$$V = \bigoplus_{r \in \mathbb{Z}} V[r], \quad g_s.V[r] \subset V[r + s], \quad g \in g, \ r \in \mathbb{Z}, \ s \in \mathbb{Z}_+.$$
We are interested in graded representations of $g[t]$.

Definition

A representation V of $g[t]$ is called \mathbb{Z}-graded if it is a vector space which has the following properties:

$$V = \bigoplus_{r \in \mathbb{Z}} V[r], \quad g_s \cdot V[r] \subset V[r + s], \quad g \in g, \ r \in \mathbb{Z}, \ s \in \mathbb{Z}_+.$$

Each $V[r]$ is a g-submodule of V.
Z-graded g[t]-modules

We are interested in graded representations of $g[t]$.

Definition

A representation V of $g[t]$ is called \mathbb{Z}-graded if it is a vector space which has the following properties:

$$V = \bigoplus_{r \in \mathbb{Z}} V[r], \quad g_s.V[r] \subset V[r+s], \quad g \in g, \ r \in \mathbb{Z}, \ s \in \mathbb{Z}_+.$$

Each $V[r]$ is a g-submodule of V.

The only \mathbb{Z}-graded evaluation modules occur when $z = 0$.
Now, we are going to focus on the case when \(g = \mathfrak{sl}_2 \).
Now, we are going to focus on the case when $\mathfrak{g} = \mathfrak{sl}_2$.

Let $\{x, y, h\}$ is the standard basis of \mathfrak{sl}_2.
Now, we are going to focus on the case when $\mathfrak{g} = \mathfrak{sl}_2$.

Let $\{x, y, h\}$ is the standard basis of \mathfrak{sl}_2.

Then, it is a simple exercise to show that $ev_0 V(n)$ are the graded irreducible representations of $\mathfrak{sl}_2[t]$.
Now, we look at an interesting family of representations that are not completely reducible.
Now, we look at an interesting family of representations that are not completely reducible.

We begin by defining elements of $U(\mathfrak{sl}_2[t])$.
Now, we look at an interesting family of representations that are not completely reducible.

We begin by defining elements of \(U(s\mathfrak{sl}_2[t]) \).

For \(r, s \in \mathbb{Z}_+ \), let

\[
S(r, s) = \{ (b_p)_{p \geq 0} : b_p \in \mathbb{Z}_+, \sum_{p \geq 0} b_p = r, \sum_{p \geq 0} pb_p = s \}.
\]
Now, we look at an interesting family of representations that are not completely reducible.

We begin by defining elements of $\mathbf{U}(\mathfrak{sl}_2[t])$.

For $r, s \in \mathbb{Z}_+$, let

$$S(r, s) = \{(b_p)_{p \geq 0} : b_p \in \mathbb{Z}_+, \sum_{p \geq 0} b_p = r, \sum_{p \geq 0} pb_p = s\}.$$

Then, define

$$y(r, s) = \sum_{(b_p)_{p \geq 0} \in S(r, s)} y_0^{(b_0)} y_1^{(b_1)} \cdots y_s^{(b_s)}$$

where $y_j^{(p)} := \frac{y_j^p}{p!}$.

$V(\xi)$ Modules
\(V(\xi) \) Modules

For \(r, s \in \mathbb{Z}_+ \), let

\[
S(r, s) = \{(b_p)_{p \geq 0} : b_p \in \mathbb{Z}_+, \quad \sum_{p \geq 0} b_p = r, \quad \sum_{p \geq 0} pb_p = s\}.
\]

Then, define

\[
y(r, s) = \sum_{(b_p)_{p \geq 0} \in S(r,s)} y_0^{(b_0)} y_1^{(b_1)} \cdots y_s^{(b_s)} \quad \text{where} \quad y_j^{(p)} := \frac{y_j^p}{p!}.
\]
For $r, s \in \mathbb{Z}_+$, let

$$S(r, s) = \{(b_p)_{p \geq 0} : b_p \in \mathbb{Z}_+, \sum_{p \geq 0} b_p = r, \sum_{p \geq 0} pb_p = s\}.$$

Then, define

$$y(r, s) = \sum_{(b_p)_{p \geq 0} \in S(r, s)} y_0^{(b_0)} y_1^{(b_1)} \cdots y_s^{(b_s)} \text{ where } y_j^{(p)} := \frac{y_j^p}{p!}.$$

For example, $y(2, 4) =$
For $r, s \in \mathbb{Z}_+$, let

$$S(r, s) = \{(b_p)_{p \geq 0} : b_p \in \mathbb{Z}_+, \sum_{p \geq 0} b_p = r, \sum_{p \geq 0} pb_p = s\}.$$

Then, define

$$y(r, s) = \sum_{(b_p)_{p \geq 0} \in S(r, s)} y_0^{(b_0)} y_1^{(b_1)} \cdots y_s^{(b_s)} \text{ where } y_j^{(p)} := \frac{y_j^p}{p!}.$$

For example, $y(2, 4) = y_0 y_4$
For $r, s \in \mathbb{Z}_+$, let

$$S(r, s) = \{(b_p)_{p \geq 0} : b_p \in \mathbb{Z}_+, \sum_{p \geq 0} b_p = r, \sum_{p \geq 0} pb_p = s\}.$$

Then, define

$$y(r, s) = \sum_{(b_p)_{p \geq 0} \in S(r, s)} y_0^{(b_0)} y_1^{(b_1)} \cdots y_s^{(b_s)} \quad \text{where} \quad y_j^{(p)} := \frac{y_j^p}{p!}.$$

For example, $y(2, 4) = y_0 y_4 + y_1 y_3$
For $r, s \in \mathbb{Z}_+$, let

$$S(r, s) = \{(b_p)_{p \geq 0} : b_p \in \mathbb{Z}_+, \sum_{p \geq 0} b_p = r, \sum_{p \geq 0} pb_p = s\}.$$

Then, define

$$y(r, s) = \sum_{(b_p)_{p \geq 0} \in S(r,s)} y_0^{(b_0)} y_1^{(b_1)} \cdots y_s^{(b_s)}$$

where $y_j^{(p)} := \frac{y_j^p}{p!}$.

For example, $y(2, 4) = y_0y_4 + y_1y_3 + y_2^{(2)}$.

\(V(\xi) \) modules

Definition (Chari—Venkatesh, E. Feigin)

Let \(\xi = (\xi_1 \geq \cdots \geq \xi_m > 0) \) be a partition. Then, \(V(\xi) \) is the \(\mathfrak{sl}_2[t] \)-module generated by \(v_\xi \) with defining relations:
$V(\xi)$ modules

Definition (Chari—Venkatesh, E. Feigin)

Let $\xi = (\xi_1 \geq \cdots \geq \xi_m > 0)$ be a partition. Then, $V(\xi)$ is the $\mathfrak{sl}_2[t]$-module generated by v_ξ with defining relations:

\[
x_r. v_\xi = 0
\]
\[
h_r. v_\xi = |\xi| \delta_{r,0} v_\xi, \quad \text{where } |\xi| = \sum_{j \geq 1} \xi_j
\]
\[
y_0^{|\xi|+1} v_\xi = 0
\]
\[
y(r, s) v_\xi = 0, \text{ where } s + r \geq 1 + rk + \sum_{j \geq k+1} \xi_j \text{ for some } k \in \mathbb{Z}_+.
\]
\(V(\xi) \) modules

Definition (Chari—Venkatesh, E. Feigin)

Let \(\xi = (\xi_1 \geq \cdots \geq \xi_m > 0) \) be a partition. Then, \(V(\xi) \) is the \(\mathfrak{sl}_2[t] \)-module generated by \(v_\xi \) with defining relations:

\[
\begin{align*}
x_r \cdot v_\xi &= 0 \\
h_r \cdot v_\xi &= |\xi| \delta_{r,0} v_\xi, \quad \text{where } |\xi| &= \sum_{j \geq 1} \xi_j \\
y_0^{|\xi|+1} v_\xi &= 0 \\
y(r, s) v_\xi &= 0, \text{where } s + r \geq 1 + rk + \sum_{j \geq k+1} \xi_j \text{ for some } k \in \mathbb{Z}_+.
\end{align*}
\]

If \(\xi = 1^n \), then \(V(\xi) \cong W_{\text{loc}}(n) \).
Definition (Chari—Venkatesh, E. Feigin)

Let $\xi = (\xi_1 \geq \cdots \geq \xi_m > 0)$ be a partition. Then, $V(\xi)$ is the $\mathfrak{sl}_2[t]$-module generated by v_ξ with defining relations:

\[
\begin{align*}
 x_r v_\xi &= 0 \\
 h_r v_\xi &= |\xi| \delta_{r,0} v_\xi, \quad \text{where } |\xi| = \sum_{j \geq 1} \xi_j \\
 y_0^{|\xi|+1} v_\xi &= 0 \\
 y(r, s) v_\xi &= 0, \text{ where } s + r \geq 1 + rk + \sum_{j \geq k+1} \xi_j \text{ for some } k \in \mathbb{Z}_+.
\end{align*}
\]

If $\xi = 1^n$, then $V(\xi) \cong W_{\text{loc}}(n)$.

If $\xi = \ell_2^m \ell_1$, then $V(\xi)$ is a Demazure module.
The motivation for finding a new presentation comes from the relations

\[y(r, s)\nu_\xi = 0, \quad r + s \geq 1 + rk + \sum_{j \geq k+1} \xi_j \text{ for some } k \in \mathbb{Z}_+. \]
Motivation

The motivation for finding a new presentation comes from the relations

\[y(r, s) v_\xi = 0, \quad r + s \geq 1 + rk + \sum_{j \geq k+1} \xi_j \text{ for some } k \in \mathbb{Z}_+. \]

1 The relationship between \(k \) and the pair \(r \) and \(s \) is unknown in general.
The motivation for finding a new presentation comes from the relations

\[y(r, s)v_\xi = 0, \quad r + s \geq 1 + rk + \sum_{j \geq k+1} \xi_j \text{ for some } k \in \mathbb{Z}_+. \]

1. The relationship between \(k \) and the pair \(r \) and \(s \) is unknown in general.
2. Notice that \(s \) only appears on the left hand side of the inequality.
For $i \geq 1$, define ν_i to be the number of parts of ξ greater than or equal to i.
For $i \geq 1$, define ν_i to be the number of parts of ξ greater than or equal to i.

Let $\xi = 4^221$. Then,
For $i \geq 1$, define ν_i to be the number of parts of ξ greater than or equal to i.

Let $\xi = 4^221$. Then,

$$\nu_1 = 4$$
For \(i \geq 1 \), define \(\nu_i \) to be the number of parts of \(\xi \) greater than or equal to \(i \).

Let \(\xi = 4^2 21 \). Then,

\[
\begin{align*}
\nu_1 &= 4 \\
\nu_2 &= 3
\end{align*}
\]
For $i \geq 1$, define ν_i to be the number of parts of ξ greater than or equal to i.

Let $\xi = 4^221$. Then,

\[
\begin{align*}
\nu_1 &= 4 \\
\nu_2 &= 3 \\
\nu_3 &= 2
\end{align*}
\]
For $i \geq 1$, define ν_i to be the number of parts of ξ greater than or equal to i.

Let $\xi = 4^221$. Then,

\[
\begin{align*}
\nu_1 &= 4 \\
\nu_2 &= 3 \\
\nu_3 &= 2 \\
\nu_4 &= 2
\end{align*}
\]
For $i \geq 1$, define ν_i to be the number of parts of ξ greater than or equal to i.

Let $\xi = 4^221$. Then,

\[
\begin{align*}
\nu_1 &= 4 \\
\nu_2 &= 3 \\
\nu_3 &= 2 \\
\nu_4 &= 2 \\
\nu_j &= 0 \quad \forall j \geq 5
\end{align*}
\]
The Young diagram of $\xi = 4^2 21$ is
The Young diagram of $\xi = 4^221$ is

The Young diagram of ξ^{tr} is
The Young diagram of $\xi = 4^2 21$ is

The Young diagram of ξ^{tr} is

Hence,

$$\xi^{tr} = (\nu_1 \geq \nu_2 \geq \cdots).$$
The Young diagram of $\xi = 4^2 21$ is

The Young diagram of ξ^{tr} is

Hence,

$$\xi^{tr} = (\nu_1 \geq \nu_2 \geq \cdots).$$

For $j \in \mathbb{N}$, we define a new partition $\xi^{(j)}$ given by

$$\xi^{(j)} := (\xi_1 \geq \xi_2 \geq \cdots \geq \xi_j \geq 0).$$
A Presentation of ξ using ξ^{tr}

Theorem (M.)

The module $V(\xi)$ is isomorphic to the quotient of the local Weyl module $W_{\text{loc}}(|\xi|)$ by the $\mathfrak{sl}_2[t]$–submodule generated by the elements

$$\{ y(r, |(\xi^{tr})^{(r)}| - r + 1)w_{|\xi|} : 1 \leq r \leq \xi_1 - 1 \}.$$
A Presentation of ξ using ξ^{tr}

Theorem (M.)

The module $V(\xi)$ is isomorphic to the quotient of the local Weyl module $W_{loc}(|\xi|)$ by the $\mathfrak{sl}_2[t]$–submodule generated by the elements

$$\{y(r, |(\xi^{tr})^{(r)}| - r + 1)w_{|\xi|} : 1 \leq r \leq \xi_1 - 1\}.$$

As a consequence of our proof, we have shown in $V(\xi)$ we have the relation

$$y(r, s)v_\xi = 0, \quad s \geq |(\xi^{tr})^{(r)}| - r + 1, \quad r \geq 1.$$
Theorem (M.)

The module \(V(\xi) \) is isomorphic to the quotient of the local Weyl module \(W_{\text{loc}}(|\xi|) \) by the \(\mathfrak{sl}_2[t] \)-submodule generated by the elements

\[
\{ y(r, |(\xi^{tr})^{(r)}| - r + 1)w_{|\xi|} : 1 \leq r \leq \xi_1 - 1 \}.
\]

As a consequence of our proof, we have shown in \(V(\xi) \) we have the relation

\[
y(r, s)v_\xi = 0, \quad s \geq |(\xi^{tr})^{(r)}| - r + 1, \quad r \geq 1.
\]

This shows that \(V(\xi) \) is finitely presented as a quotient of a local Weyl module.
Why find new presentations of $V(\xi)$?

We would like to understand the structure of $V(\xi)$ modules.
Why find new presentations of $V(\xi)$?

We would like to understand the structure of $V(\xi)$ modules.

For example:
Why find new presentations of $V(\xi)$?

We would like to understand the structure of $V(\xi)$ modules.

For example:

- When is $\text{Hom}(V(\xi), V(\xi')) \neq 0$?
Why find new presentations of $V(\xi)$?

We would like to understand the structure of $V(\xi)$ modules.

For example:
- When is $\text{Hom}(V(\xi), V(\xi')) \neq 0$?
- What is the kernel of $V(\xi) \rightarrow V(\xi')$ in this case?
Let $\xi = (\xi_1 \geq \xi_2 \geq \cdots \geq \xi_m > 0)$ be a partition. We begin by defining partitions ξ^+, ξ^-.

If $m > 1$, then $\xi^- = (\xi^{-1} \geq \xi^{-2} \geq \cdots \geq \xi^{-m+2} \geq \xi^{-m+1} \geq 0)$ is given by $\xi^{-r} = \begin{cases} \xi_r & \text{if } r < m-1 \\ \xi_{m-1} - \xi_m & \text{if } r = m-1 \\ 0 & \text{if } r \geq m \end{cases}$

Define $\xi^+ = (\xi^1 \geq \xi^2 \geq \cdots \geq \xi^{m-1} \geq \xi^m \geq 0)$ is the unique partition associated to the n-tuple $(\xi_1, \xi_2, \ldots, \xi_{m-2}, \xi_{m-1} + 1, \xi_m)$.
Let $\xi = (\xi_1 \geq \xi_2 \geq \cdots \geq \xi_m > 0)$ be a partition. We begin by defining partitions ξ^+, ξ^-. If $m > 1$, then $\xi^- = (\xi^-_1 \geq \xi^-_2 \geq \cdots \geq \xi^-_{m-2} \geq \xi^-_{m-1} \geq 0)$ is given by
Short Exact Sequences

Let $\xi = (\xi_1 \geq \xi_2 \geq \cdots \geq \xi_m > 0)$ be a partition. We begin by defining partitions ξ^+, ξ^-. If $m > 1$, then $\xi^- = (\xi^-_1 \geq \xi^-_2 \geq \cdots \geq \xi^-_{m-2} \geq \xi^-_{m-1} \geq 0)$ is given by

$$
\xi^-_r = \begin{cases}
\xi_r & \text{if } r < m - 1 \\
\xi_{m-1} - \xi_m & \text{if } r = m - 1 \\
0 & \text{if } r \geq m
\end{cases}
$$
Short Exact Sequences

Let $\xi = (\xi_1 \geq \xi_2 \geq \cdots \geq \xi_m > 0)$ be a partition. We begin by defining partitions $\xi^+, \xi^-.$

If $m > 1,$ then $\xi^- = (\xi^-_1 \geq \xi^-_2 \geq \cdots \geq \xi^-_{m-2} \geq \xi^-_{m-1} \geq 0)$ is given by

\[
\xi^-_r = \begin{cases}
\xi_r & \text{if } r < m - 1 \\
\xi_{m-1} - \xi_m & \text{if } r = m - 1 \\
0 & \text{if } r \geq m
\end{cases}
\]

Define $\xi^+ = (\xi^+_1 \geq \xi^+_2 \geq \cdots \geq \xi^+_{m-1} \geq \xi^+_m \geq 0)$ is the unique partition associated to the n-tuple $(\xi_1, \xi_2, \ldots, \xi_{m-2}, \xi_{m-1} + 1, \xi_m - 1).$
Theorem (Chari—Venkatesh, 2014)

For $m > 1$, there exists a short exact sequence of $\mathfrak{sl}_2[t]$-modules

$$0 \rightarrow \tau_{(m-1)\xi_m} V(\xi^-) \xrightarrow{\varphi^-} V(\xi) \xrightarrow{\varphi^+} V(\xi^+) \rightarrow 0.$$
Theorem (Chari—Venkatesh, 2014)

For $m > 1$, there exists a short exact sequence of $\mathfrak{sl}_2[t]$-modules

$$0 \to \tau_{(m-1)\xi_m} V(\xi^-) \xrightarrow{\varphi^-} V(\xi) \xrightarrow{\varphi^+} V(\xi^+) \to 0.$$

But, there are gaps in the proof.
Theorem (Chari—Venkatesh, 2014)

For $m > 1$, there exists a short exact sequence of $\mathfrak{sl}_2[t]$-modules

$$0 \to \tau_{(m-1)\xi_m} V(\xi^-) \xrightarrow{\varphi^-} V(\xi) \xrightarrow{\varphi^+} V(\xi^+) \to 0.$$

But, there are gaps in the proof.

With our new presentation, we provided a different construction of φ^-.
Construction of φ^-

Let $\tilde{\xi}_1$ be the partition given by

$$\tilde{\xi}_1 = (\xi_1 \geq \xi_2 \geq \cdots \geq \xi_{m-2} \geq \xi_{m-1} - 1 \geq \xi_m - 1 \geq 0).$$
Construction of φ^-

Let $\tilde{\xi}_1$ be the partition given by

\[\tilde{\xi}_1 = (\xi_1 \geq \xi_2 \geq \cdots \geq \xi_{m-2} \geq \xi_{m-1} - 1 \geq \xi_m - 1 \geq 0). \]

Lemma (M.)

There exists a well defined map of $\mathfrak{sl}_2[t]$–modules $V(\tilde{\xi}_1) \rightarrow V(\xi)$ extending the assignment $v_{\tilde{\xi}_1} \rightarrow y_{\nu_1(\xi)-1} v_{\xi}$.
Construction of φ^-

Let $\tilde{\xi}_1$ be the partition given by

$$\tilde{\xi}_1 = (\xi_1 \geq \xi_2 \geq \cdots \geq \xi_{m-2} \geq \xi_{m-1} - 1 \geq \xi_m - 1 \geq 0).$$

Lemma (M.)

There exists a well defined map of $\mathfrak{sl}_2[t]$-modules $V(\tilde{\xi}_1) \to V(\xi)$ extending the assignment $v_{\tilde{\xi}_1} \to y_{\nu_1(\xi)-1} v_{\xi}$.

Then, φ^- is a composition of the well defined maps from this lemma.
Short Exact Sequences

These short exact sequences can be used to provide additional information about $V(\xi)$.

Chari and Venkatesh showed that $V(\xi)$ modules are fusion products. We also use them to study the tensor products of local Weyl modules and produce filtrations by Demazure modules.
Short Exact Sequences

These short exact sequences can be used to provide additional information about $V(\xi)$.

Chari and Venkatesh showed that $V(\xi)$ modules are fusion products.
Short Exact Sequences

These short exact sequences can be used to provide additional information about $V(\xi)$.

Chari and Venkatesh showed that $V(\xi)$ modules are fusion products.

We also use them to study the tensor products of local Weyl modules and produce filtrations by Demazure modules.