Global Weyl modules and maximal parabolics of twisted affine Lie algebras

Matthew Lee

Department of Mathematics
University of California, Riverside

Interactions of quantum affine algebras with cluster algebras, current algebras and categorification June 5, 2018
For a simple Lie algebra $g \supset h$

$\Delta = \{ \alpha_i : i \in I \}$

$\Phi^+ = \{ \sum_{i \in I} a_i \alpha_i : a_i \geq 0 \ \forall i \}$

$b = h \oplus \bigoplus_{\alpha \in \Phi^+} g_\alpha = h \oplus n^+$

P^+ dominant integral weights
Universal highest modules

<table>
<thead>
<tr>
<th>s.s.</th>
<th>\mathfrak{g} or $\hat{\mathfrak{g}}$</th>
<th>\mathfrak{p} parabolic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Verma Module</td>
<td></td>
</tr>
</tbody>
</table>

- \mathfrak{g} or $\hat{\mathfrak{g}}$ represents the Lie algebra or its universal enveloping algebra
- \mathfrak{p} parabolic indicates a parabolic subalgebra
Universal highest modules

<table>
<thead>
<tr>
<th></th>
<th>\mathfrak{g} or $\widehat{\mathfrak{g}}$</th>
<th>\mathfrak{p} parabolic</th>
</tr>
</thead>
<tbody>
<tr>
<td>s.s.</td>
<td>Verma Module</td>
<td>Parabolic Verma Module</td>
</tr>
</tbody>
</table>

Matthew Lee
Global Weyl modules
Universal highest modules

<table>
<thead>
<tr>
<th></th>
<th>g or \hat{g}</th>
<th>\mathfrak{p} parabolic</th>
</tr>
</thead>
<tbody>
<tr>
<td>s.s.</td>
<td>Verma Module</td>
<td>Parabolic Verma Module</td>
</tr>
<tr>
<td>affine</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Proposition (Chari–Pressley, 2001)

Let V be an integrable $U(\mathfrak{g}[t, t^{-1}] \oplus \mathbb{C}d)$-module generated by a non-zero element $v \in V^+_\lambda$. Then V is a quotient of $W(\lambda)$, the global Weyl module.

- $W(\lambda)$ is a $(U(\mathfrak{g}[t, t^{-1}]), A_\lambda)$-bimodule
- $A_\lambda = U(\mathfrak{h}[t, t^{-1}])/ \text{Ann}_{U(\mathfrak{h}[t, t^{-1}])} w_\lambda$
Proposition (Chari–Pressley, 2001)

Let V be an integrable $U(g[t, t^{-1}] \oplus \mathbb{C}d)$-module generated by a non-zero element $v \in V^+_\lambda$. Then V is a quotient of $W(\lambda)$, the global Weyl module.

$W(\lambda)$ is a $(U(g[t, t^{-1}]), A_\lambda)$-bimodule

$A_\lambda = U(\mathfrak{h}[t, t^{-1}]) / \text{Ann}_{U(\mathfrak{h}[t, t^{-1}])} w_\lambda$
Proposition (Chari–Pressley, 2001)

Let V be an integrable $U(g[t, t^{-1}] \oplus \mathbb{C}d)$-module generated by a non-zero element $v \in V_{\lambda}^+$. Then V is a quotient of $W(\lambda)$, the global Weyl module.

- $W(\lambda)$ is a $(U(g[t, t^{-1}]), A_{\lambda})$-bimodule
 - $A_{\lambda} = U(\mathfrak{h}[t, t^{-1}])/\text{Ann}_{U(\mathfrak{h}[t, t^{-1}])}w_{\lambda}$
Universal highest modules

<table>
<thead>
<tr>
<th>g or (\hat{g})</th>
<th>(p) parabolic</th>
</tr>
</thead>
<tbody>
<tr>
<td>s.s.</td>
<td>Verma Module</td>
</tr>
<tr>
<td></td>
<td>Parabolic Verma Module</td>
</tr>
<tr>
<td>affine</td>
<td>Global Weyl module (untwisted and twisted)</td>
</tr>
</tbody>
</table>
Universal highest modules

<table>
<thead>
<tr>
<th></th>
<th>\mathfrak{g} or $\hat{\mathfrak{g}}$</th>
<th>\mathfrak{p} parabolic</th>
</tr>
</thead>
<tbody>
<tr>
<td>s.s.</td>
<td>Verma Module</td>
<td>Parabolic Verma Module</td>
</tr>
<tr>
<td>affine</td>
<td>Global Weyl module (untwisted and twisted)</td>
<td>(Untwisted) Global Weyl Module</td>
</tr>
</tbody>
</table>
Universal highest modules

<table>
<thead>
<tr>
<th>s.s.</th>
<th>\mathfrak{g} or $\hat{\mathfrak{g}}$</th>
<th>\mathfrak{p} parabolic</th>
</tr>
</thead>
<tbody>
<tr>
<td>s.s.</td>
<td>Verma Module</td>
<td>Parabolic Verma Module</td>
</tr>
</tbody>
</table>
| affine | Global Weyl module (untwisted and twisted) | (Untwisted) Global Weyl Module (Twisted)??
Maximal parabolic

\[g = \bigoplus_{s=0}^{k-1} g_s, \ g_0 \text{ is simple, and each } g_s, 1 \leq s \leq k - 1, \text{ is an irreducible } g_0\text{-module} \]

<table>
<thead>
<tr>
<th>k</th>
<th>g</th>
<th>(g_0)</th>
<th>(g_k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>(A_{2n})</td>
<td>(B_n)</td>
<td>(V_{g_0}(2\theta^s_0))</td>
</tr>
<tr>
<td>2</td>
<td>(A_{2n-1}), (n \geq 2)</td>
<td>(C_n)</td>
<td>(V_{g_0}(\theta^s_0))</td>
</tr>
<tr>
<td>2</td>
<td>(D_{n+1}), (n \geq 3)</td>
<td>(B_n)</td>
<td>(V_{g_0}(\theta^s_0))</td>
</tr>
<tr>
<td>2</td>
<td>(E_6)</td>
<td>(F_4)</td>
<td>(V_{g_0}(\theta^s_0))</td>
</tr>
<tr>
<td>3</td>
<td>(D_4)</td>
<td>(G_2)</td>
<td>(V_{g_0}(\theta^s_0))</td>
</tr>
</tbody>
</table>

\[\sigma : \mathbb{C}[t, t^{-1}] \rightarrow \mathbb{C}[t, t^{-1}] \text{ by } \sigma(f(t)) = f(\xi^{-1}t), \ \xi \text{ a } k\text{-th root of unity} \]
Maximal parabolic

\[\mathfrak{g} = \bigoplus_{s=0}^{k-1} \mathfrak{g}_s, \quad \mathfrak{g}_0 \text{ is simple, and each } \mathfrak{g}_s, \ 1 \leq s \leq k - 1, \text{ is an irreducible } \mathfrak{g}_0\text{-module} \]

<table>
<thead>
<tr>
<th>(k)</th>
<th>(\mathfrak{g})</th>
<th>(\mathfrak{g}_0)</th>
<th>(\mathfrak{g}_k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>(A_{2n})</td>
<td>(B_n)</td>
<td>(V_{\mathfrak{g}_0}(2\theta_0^s))</td>
</tr>
<tr>
<td>2 (\geq 2)</td>
<td>(A_{2n-1})</td>
<td>(C_n)</td>
<td>(V_{\mathfrak{g}_0}(\theta_0^s))</td>
</tr>
<tr>
<td>2 (\geq 3)</td>
<td>(D_{n+1})</td>
<td>(B_n)</td>
<td>(V_{\mathfrak{g}_0}(\theta_0^s))</td>
</tr>
<tr>
<td>2</td>
<td>(E_6)</td>
<td>(F_4)</td>
<td>(V_{\mathfrak{g}_0}(\theta_0^s))</td>
</tr>
<tr>
<td>3</td>
<td>(D_4)</td>
<td>(G_2)</td>
<td>(V_{\mathfrak{g}_0}(\theta_0^s))</td>
</tr>
</tbody>
</table>

\[\sigma : \mathbb{C}[t, t^{-1}] \rightarrow \mathbb{C}[t, t^{-1}] \text{ by } \sigma(f(t)) = f(\xi^{-1}t), \ \xi \text{ a } k\text{-th root of unity} \]
Maximal parabolic

\[g = \bigoplus_{s=0}^{k-1} g_s, \quad g_0 \text{ is simple, and each } g_s, 1 \leq s \leq k - 1, \text{ is an irreducible } g_0\text{-module} \]

<table>
<thead>
<tr>
<th>(k)</th>
<th>(g)</th>
<th>(g_0)</th>
<th>(g_k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>(A_{2n})</td>
<td>(B_n)</td>
<td>(V_{g_0}(2\theta^s_0))</td>
</tr>
<tr>
<td>2</td>
<td>(A_{2n-1}), (n \geq 2)</td>
<td>(C_n)</td>
<td>(V_{g_0}(\theta^s_0))</td>
</tr>
<tr>
<td>2</td>
<td>(D_{n+1}), (n \geq 3)</td>
<td>(B_n)</td>
<td>(V_{g_0}(\theta^s_0))</td>
</tr>
<tr>
<td>2</td>
<td>(E_6)</td>
<td>(F_4)</td>
<td>(V_{g_0}(\theta^s_0))</td>
</tr>
<tr>
<td>3</td>
<td>(D_4)</td>
<td>(G_2)</td>
<td>(V_{g_0}(\theta^s_0))</td>
</tr>
</tbody>
</table>

\(\sigma : \mathbb{C}[t, t^{-1}] \to \mathbb{C}[t, t^{-1}] \) by \(\sigma(f(t)) = f(\xi^{-1}t) \), \(\xi \) a \(k \)-th root of unity
The Maximal parabolic,
\[p_j = \langle x_i^{\pm} \otimes 1, x_0^{\pm} \otimes t^{\pm 1}, x_j^{+} \otimes 1 > \subset (g[t, t^{-1}])^\sigma \]

Proposition (L.)

For a simply laced Lie algebra \(g \) and some \(0 < j \leq n \)

\[p_j \simeq (g[t]^\sigma)^\tau \text{ for some automorphism } \tau. \]

Since the fixed points of \(g^{\sigma \tau} \) form a semisimple Lie algebra, we can define \(I_0, \Delta_0, \) and \(P_0^+ \).
The Maximal parabolic,
\[p_j = \langle x_i^{\pm} \otimes 1, x_0^{\pm} \otimes t^\pm, x_j^+ \otimes 1 \rangle \subset (g[t, t^{-1}])^\sigma \]

Proposition (L.)

For a simply laced Lie algebra \(g \) *and some* \(0 < j \leq n \)

\[p_j \simeq (g[t]^\sigma)^\tau \] *for some automorphism* \(\tau \).

Since the fixed points of \(g^{\sigma \tau} \) form a semisimple Lie algebra, we can define \(l_0, \Delta_0, \) and \(P_0^+ \).
Realization

- The Maximal parabolic,
 \[p_j = \left< x_i^\pm \otimes 1, x_0^\pm \otimes t^{\pm 1}, x_j^+ \otimes 1 \right> \subset (g[t, t^{-1}])^\sigma \]

Proposition (L.)

*For a simply laced Lie algebra \(g \) and some \(0 < j \leq n \)

\[p_j \simeq (g[t]^\sigma)^\tau \text{ for some automorphism } \tau. \]

- Since the fixed points of \(g^{\sigma \tau} \) form a semisimple Lie algebra, we can define \(l_0, \Delta_0, \) and \(P_0^+ \).
Global Weyl Module

- For $\lambda \in P_0^+$, $W(\lambda)$ is generated by w_λ with relations:

 $h.w_\lambda = \lambda(h)w_\lambda \quad n^+[t]^{\sigma^\tau}.w_\lambda = 0, \quad (x_i^- \otimes 1)^{\lambda(h_i)+1}.w_\lambda = 0$.

- For $\lambda \in P_0^+$, $W(\lambda)$ is a $(U(g[t]^{\sigma^\tau}), A_\lambda)$-bimodule.

- $A_\lambda = U(\mathfrak{h}[t]^{\sigma^\tau})/\text{Ann}_{U(\mathfrak{h}[t]^{\sigma^\tau})}W_\lambda$

- To obtain a better description of $W(\lambda)$ we need to describe A_λ
Motivation
Background
Realization of Maximal Parabolic
Global Weyl Module

Global Weyl Module

For $\lambda \in P_0^+$, $W(\lambda)$ is generated by w_λ with relations:

$$h \cdot w_\lambda = \lambda(h) w_\lambda \quad n^+ [t]^{\sigma \tau} \cdot w_\lambda = 0, \quad (x_i^- \otimes 1)^{\lambda(h_i)+1} \cdot w_\lambda = 0.$$

For $\lambda \in P_0^+$, $W(\lambda)$ is a $(U(g[t]^{\sigma \tau}), A_\lambda)$-bimodule.

$$A_\lambda = U(h[t]^{\sigma \tau}) / \text{Ann}_{U(h[t]^{\sigma \tau})} W_\lambda$$

To obtain a better description of $W(\lambda)$ we need to describe A_λ.

Matthew Lee Global Weyl modules
For $\lambda \in P_0^+$, $W(\lambda)$ is generated by w_λ with relations:

$$h . w_\lambda = \lambda(h) w_\lambda, \quad n^+[t]^{\sigma, \tau} . w_\lambda = 0, \quad (x_i^- \otimes 1)^{\lambda(h_i)+1} . w_\lambda = 0.$$

For $\lambda \in P_0^+$, $W(\lambda)$ is a $(U(g[t]^{\sigma, \tau}), A_\lambda)$-bimodule.

$$A_\lambda = U(h[t]^{\sigma, \tau})/Ann_{U(h[t]^{\sigma, \tau})} W_\lambda$$

To obtain a better description of $W(\lambda)$ we need to describe A_λ.
Global Weyl Module

- For $\lambda \in P_0^+$, $W(\lambda)$ is generated by w_λ with relations:

 $$h.w_\lambda = \lambda(h)w_\lambda \quad n^+[t]^{\sigma\tau}.w_\lambda = 0, \quad (x_i^- \otimes 1)^{\lambda(h_i)+1}.w_\lambda = 0.$$

- For $\lambda \in P_0^+$, $W(\lambda)$ is a $(U(g[t]^{\sigma\tau}), A_\lambda)$-bimodule.

 $$A_\lambda = U(h[t]^{\sigma\tau})/\text{Ann}_U(h[t]^{\sigma\tau})w_\lambda$$

- To obtain a better description of $W(\lambda)$ we need to describe A_λ.
Theorem (L.)

\[\mathbb{A}_\lambda \mathbb{A}_\lambda \left/ \text{Jac}(\mathbb{A}_\lambda) \right. \simeq \mathbb{C}[P_{i,r_i} : r_i \leq \min\{\lambda(h_i), \lambda(h_0)\}] / \left< P_{1,r_1} \cdots P_{n,r_n} : \sum_{i \in I_0} a_i(\alpha_0) r_i \geq \lambda(h_0) + 1 \right> \]

• If \(a_i(0) \leq 1 \ \forall i \in I_0 \) then \(\text{Jac}(\mathbb{A}_\lambda) = 0 \).
Theorem (L.)

\[\mathbb{A}_\lambda / \text{Jac}(\mathbb{A}_\lambda) \cong \mathbb{C}[P_{i,r_i} : r_i \leq \min\{\lambda(h_i), \lambda(h_0)\}] / \]
\[\langle P_1, r_1 \cdots P_n, r_n : \sum_{i \in I_0} a_i(\alpha_0)r_i \geq \lambda(h_0) + 1 \rangle \]

- If \(a_i(0) \leq 1 \ \forall i \in I_0 \) then \(\text{Jac}(\mathbb{A}_\lambda) = 0. \)
Motivation
Background
Realization of Maximal Parabolic
Global Weyl Module
A_{λ}

- $W(\lambda)$ is irreducible iff
 \[\{ i \in l_0 : \lambda(h_i) > 0 \} \cup \{ i \in l_0 : a_i(\alpha_0) = a_i(\theta_k a_j(\alpha_0) - 1) \} \]

- The following are equivalent:
 1. $W(\lambda)$ is finite-dimensional
 2. A_{λ} is finite-dimensional
$W(\lambda)$ is irreducible iff
\[\{ i \in I_0 : \lambda(h_i) > 0 \} \cup \{ i \in I_0 : a_i(\alpha_0) = a_i(\theta_k a_j(\alpha_0) - 1) \}\]

The following are equivalent:

1. $W(\lambda)$ is finite-dimensional
2. A_λ is finite-dimensional
Motivation
Background
Realization of Maximal Parabolic
Global Weyl Module

\[W(\lambda) \text{ is irreducible iff } \{ i \in l_0 : \lambda(h_i) > 0 \} \cup \{ i \in l_0 : a_i(\alpha_0) = a_i(\theta_{k}a_j(\alpha_0) - 1) \} \]

The following are equivalent:

1. \(W(\lambda) \) is finite-dimensional
2. \(A_{\lambda} \) is finite-dimensional

Matthew Lee
Global Weyl modules
• $W(\lambda)$ is irreducible iff
 \[\{ i \in I_0 : \lambda(h_i) > 0 \} \cup \{ i \in I_0 : a_i(\alpha_0) = a_i(\theta_k a_j(\alpha_0) - 1) \} \]

• The following are equivalent:
 1. $W(\lambda)$ is finite-dimensional
 2. A_λ is finite-dimensional
Future Work

- Repeat for Yangians
Thank you for your time.
References

J.E. Humphreys
Introduction to Lie Algebras and Representation Theory.

V. Chari and A. Pressley
Weyl Modules for classical and quantum affine algebras

G. Fourier, N. Manning, and P. Senesi
Global Weyl modules for the twisted loop algebra.
V. Chari and G. Fourier, and P. Senesi
Weyl modules for the twisted loop algebras

G Fourier and D. Kus
Demazure modules and Weyl modules: The twisted current case.