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On the affine VW supercategory

Preliminaries

Background: vector superspaces. Work over C.
A Z/2Z-graded vector space V = V0 ⊕ V1 is a vector superspace.

The superdimension of V is
dim(V ) := (dimV0|dimV1) = dimV0 − dimV1.

Given a homogeneous element v ∈ V , the parity (or the degree) of
v is v ∈ {0, 1}.
The parity switching functor π sends V0 7→ V1 and V1 7→ V0.

Let m = dimV0 and n = dimV1. The Lie superalgebra is
gl(m|n) := EndC(V ).

That is, given a homogeneous ordered basis for V:

V = C{v1, . . . , vm}︸ ︷︷ ︸
V0

⊕C{v1′ , . . . , vn′}︸ ︷︷ ︸
V1

,
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Preliminaries

Matrix representation for gl(m|n).

the Lie superalgebra is the endomorphism algebra

gl(m|n) :=

{(
A B
C D

)
: A ∈ Mm,m,B,C

t ∈ Mm,n,D ∈ Mn,n

}
,

where Mi ,j := Mi ,j(C). Since gl(m|n) = gl(m|n)0 ⊕ gl(m|n)1,

gl(m|n)0 =

{(
A 0
0 D

)}
and gl(m|n)1 =

{(
0 B
C 0

)}
.

We say V is the natural representation of gl(m|n).

The grading on gl(m|n) is induced by V , with Lie superbracket
(supercommutator) [x , y ] = xy − (−1)xyyx for x , y homogeneous.
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Periplectic Lie superalgebras p(n)

Periplectic Lie superalgebras p(n).

Let m = n. Then

V = C2n = C{v1, . . . , vn}︸ ︷︷ ︸
V0

⊕C{v1′ , . . . , vn′}︸ ︷︷ ︸
V1

.

Define β : V ⊗ V → C as a symmetric, odd, nondegenerate
bilinear form satisfying:

β(v ,w) = β(w , v), β(v ,w) = 0 if v = w .

We define periplectic (strange) Lie superalgebras as:

p(n) := {x ∈ EndC(V ) : β(xv ,w) + (−1)xvβ(v , xw) = 0}.

In terms of above basis,

p(n) =

{(
A B
C −At

)
∈ gl(n|n) : B = Bt ,C = −C t

}
.
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Periplectic Lie superalgebras p(n)

Symmetric monoidal structure.

Consider the category C of representations of p(n) with

Homp(n)(V ,V ′) := {f : V → V ′ : f homogeneous,C− linear,

f (x .v) = (−1)xf x .f (v), v ∈ V , x ∈ p(n)}.

Then U(p(n)) of p(n) is a Hopf superalgebra:

I (coproduct) ∆(x) = x ⊗ 1 + 1⊗ x ,

I (counit) ε(x) = 0,

I (antipode) S(x) = -x.

So the category of representations of p(n) is monoidal.
For x ⊗ y ∈ U(p(n))⊗ U(p(n)) on v ⊗ w ,

(x ⊗ y).(v ⊗ w) = (−1)yvxv ⊗ yw .
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Periplectic Lie superalgebras p(n)

Symmetric monoidal structure.
For x , y , a, b ∈ U(p(n)),

(x ⊗ y) ◦ (a⊗ b) := (−1)ya(x ◦ a)⊗ (y ◦ b),

and for two representations V and V ′, the super swap

σ : V ⊗ V ′ −→ V ′ ⊗ V , σ(v ⊗ w) = (−1)vww ⊗ v

is a map of p(n)-representations satisfying σ∗ = −σ.
Thus C is a symmetric monoidal category.
Furthermore, β induces a representation V and its dual V ∗ via

V → V ∗, v 7→ β(v ,−),

identifying V1 with V ∗
0

and V0 with V ∗
1

. This induces the dual map

β∗ : C ∼= C∗ −→ (V⊗V )∗ ∼= V⊗V , β∗(1) =
∑
i

−vi⊗vi ′+vi ′⊗vi ,

where β = β∗ = 1. Mee Seong Im West Point, NY 7
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Periplectic Lie superalgebras p(n)

Quadratic (fake) Casimir and Jucys-Murphy elements: y`’s.
Furthermore, we define

Ω = 2
∑
x∈X

x ⊗ x∗ ∈ p(n)⊗ gl(n|n)

(
2Ω = −

)
,

where X is a basis of p(n) and x∗ is a dual basis element of p(n),
and p(n)⊥ is taken with respect to the supertrace:

str

(
A B
C D

)
= tr(A)− tr(D).

The actions of Ω and p(n) commute on M ⊗ V , so
Ω ∈ Endp(n)(M ⊗ V ). We define

Y` : M ⊗ V⊗a −→ M ⊗ V⊗a as Y` =
`−1∑
i=0

Ωi ,` = ,

where Ωi ,` acts on the i-th and `-th factor, and identity otherwise,
where the 0-th factor is the module M. Mee Seong Im West Point, NY 8
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Classical Schur-Weyl duality.

Let W be an n-dimensional complex vector space. Consider W⊗a.
Then the symmetric group Sa acts on W⊗a by permuting the
factors: for si = (i i + 1) ∈ Sa,

si .(w1 ⊗ · · · ⊗ wa) = w1 ⊗ · · · ⊗ wi+1 ⊗ wi ⊗ · · · ⊗ wa.

We also have GL(W ) acting on W⊗a via the diagonal action: for
g ∈ GL(W ),

g .(w1 ⊗ · · · ⊗ wa) = gw1 ⊗ · · · ⊗ gwa.

Then actions of GL(W ) (left natural action) and Sa (right
permutation action) commute giving us the following:
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Schur-Weyl duality.

Consider the natural representations

(CSa)op
φ−→ EndC(W⊗a) and GL(W )

ψ−→ EndC(W⊗a).

Then Schur-Weyl duality gives us

1. φ(CSa) = EndGL(W )(W⊗a),

2. if n ≥ a, then φ is injective. So imφ ∼= EndGL(W )(W⊗a),

3. ψ(GL(W )) = EndCSa(W⊗a),

4. there is an irreducible (GL(W ), (CSa)op)-bimodule
decomposition (see next slide):
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Schur-Weyl duality

Schur-Weyl duality (continued).

W⊗a =
⊕

λ=(λ1,λ2,...)`a

`(λ)≤n

∆λ ⊗ Sλ,

where
I ∆λ is an irreducible GL(W )-module associated to λ,
I Sλ is an irreducible CSa-module associated to λ, and
I `(λ) = max{i ∈ Z : λi 6= 0, λ = (λ1, λ2, . . .)}.

In higher Schur-Weyl duality, we construct a result analogous to

CSa ∼= EndGL(W )(W⊗a),

but we use the existence of commuting actions on the tensor
product of arbitrary gln-representation M with W⊗a:

gln � M ⊗W⊗a 	 Ha,
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Schur-Weyl duality

where Ha is the degenerate affine Hecke algebra. The Hecke
algebra Ha contains the group algebra CSa and the polynomial
algebra C[y1, . . . , ya] as subalgebras.

So as a vector space, Ha
∼= CSa ⊗ C[y1, . . . , ya], and has a basis

B = {wyk1
1 · · · y

ka
a : w ∈ Sa, ki ∈ N0}.

In this talk, we aim to construct higher Schur-Weyl duality in the
context of p(n) and affine Brauer algebras, which we will denote by
sVVa (so affine Brauer algebras were constructed from the
motivation to formulate higher Schur-Weyl duality for the
periplectic Lie superalgebra action, i.e., we need to find another
algebra whose action on a representation M ⊗ V⊗a commutes with
the action of p(n)).
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Affine Brauer algebras

Affine Brauer algebras (generators and local moves).

sVVa has generators si , bi , b
∗
i , yj , where i = 1, . . . , a− 1,

j = 1, . . . , a and relations

= =

= =

=

Continued in the next slide.
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Affine Brauer algebras

Affine Brauer algebras (local moves; continued).

= − = −

= (braid reln) = (braid reln)

= (adjunctions) = − (adjunctions)

= (untwisting reln) =

= − (untwisting reln) =
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Affine Brauer algebras

Affine Brauer algebras (local moves; continued).

= =

= =

= =

= + − =

− = − − =
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Affine Brauer algebras

(Regular) monomials.

An example.

Algebraically, it is written as y2
1 y

4
6 y7s5b

∗
2b2b

∗
4b4s1s3s6y1y

2
3 .

Our affine VW superalgebra sVVa is:

I super (signed) version of the degenerate BMW algebra,

I the signed version of the affine VW algebra, and

I an affine version of the Brauer superalgebra.
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The center of affine VW superalgebras

The center of sVVa.

Theorem
The center Z (sVVa) consists of all polynomials of the form∏

1≤i<j≤a
((yi − yj)

2 − 1)f̃ + c ,

where f̃ ∈ C[y1, . . . , ya]Sa and c ∈ C.

The deformed squared Vandermonde determinant∏
1≤i<j≤a((yi − yj)

2 − 1) is symmetric, so∏
1≤i<j≤a

((yi − yj)
2 − 1) ∈ C[y1, . . . , ya]Sa .
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Affine VW supercategory and Brauer supercategory

Affine VW supercategory sVV and connections to Brauer
supercategory sBr

The affine VW supercategory (or the affine Nazarov-Wenzl
supercategory) is the C-linear strict monoidal supercategory
generated as a monoidal supercategory by a single object F,

morphisms s = :F⊗F −→F⊗F, [ = :F⊗F→ 1,

[∗ = : 1→F⊗F, and an additional morphism

y = :F⊗F −→F⊗F, subject to the braid, snake

(adjunction), and untwisting relations, and the dot relations:

= + − = + .

Objects in sVV can be identified with natural numbers, identifying
a ∈ N0 with F⊗a, F⊗0 = 1, and the morphisms are linear
combinations of dotted diagrams. Mee Seong Im West Point, NY 18
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Affine VW supercategory and Brauer supercategory

sVV and sBr
The category sVV can alternatively be generated by vertically
stacking [i , [

∗
i , si , and yi = 1i−1 ⊗ y ⊗ 1a−i ∈ HomsVV (a, a).

It is a filtered category, i.e., the hom spaces HomsVV (a, b) have a
filtration by the span HomsVV (a, b)≤k of all dotted diagrams with
at most k dots.

The Brauer supercategory sBr is the C-linear strict monoidal
supercategory generated as a monoidal supercategory by a single

object F, and morphisms s = :F⊗F −→F⊗F,
[ = :F⊗F→ 1, and [∗ = : 1→F⊗F, subject to the
relations above.

If M is the trivial representation, then actions on sVV factor
through sBr .
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Thank you

Thank you.

Questions?
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