Primitive ideals and finite *W*-algebras of low rank

Jonathan Brown (joint work with Simon Goodwin)

SUNY Oneonta

June 4, 2018

Jonathan Brown (joint work with Simon Goodwin) Primitive ideals and finite W-algebras of low rank

• g is a semisimple finite dimensional complex Lie algebra.

- Question: What are the simple g-modules?
- Easier question: What are the primitive ideals of U(g)? (An ideal in some algebra is *primitive* if it is the annihilator of a simple module).
- Duflo: Every primitive ideal in *U*(g) is equal to the annihilator of a simple highest weight module.
- Joseph: If *I* is a primitive ideal $U(\mathfrak{g})$ then the associated variety $\mathcal{VA}(I) = \overline{G \cdot e}$, the closure of a nilpotent orbit. $(\mathcal{VA}(I) = Z(I)$, when we consider *I* to be contained in $S(\mathfrak{g}^*) = \mathbb{C}[\mathfrak{g}]$.)
- In summary:

 $\{\text{simple } g\text{-modules}\} \twoheadrightarrow \text{Prim } U(g) \twoheadrightarrow \{\text{nilpotent orbits}\}.$

• Finite *W*-algebras fit in quite nicely with this picture.

- g is a semisimple finite dimensional complex Lie algebra.
- Question: What are the simple g-modules?
- Easier question: What are the primitive ideals of U(g)? (An ideal in some algebra is *primitive* if it is the annihilator of a simple module).
- Duflo: Every primitive ideal in *U*(g) is equal to the annihilator of a simple highest weight module.
- Joseph: If *I* is a primitive ideal $U(\mathfrak{g})$ then the associated variety $\mathcal{VA}(I) = \overline{G \cdot e}$, the closure of a nilpotent orbit. $(\mathcal{VA}(I) = Z(I)$, when we consider *I* to be contained in $S(\mathfrak{g}^*) = \mathbb{C}[\mathfrak{g}]$.)
- In summary: {simple g-modules} --> Prim U(g) --> {nilpotent
- Finite *W*-algebras fit in quite nicely with this picture.

- g is a semisimple finite dimensional complex Lie algebra.
- Question: What are the simple g-modules?
- Easier question: What are the primitive ideals of U(g)? (An ideal in some algebra is *primitive* if it is the annihilator of a simple module).
- Duflo: Every primitive ideal in *U*(g) is equal to the annihilator of a simple highest weight module.
- Joseph: If *I* is a primitive ideal $U(\mathfrak{g})$ then the associated variety $\mathcal{VA}(I) = \overline{G \cdot e}$, the closure of a nilpotent orbit. $(\mathcal{VA}(I) = Z(I)$, when we consider *I* to be contained in $S(\mathfrak{g}^*) = \mathbb{C}[\mathfrak{g}]$.)
- In summary: {simple g-modules} --> Prim U(g) --> {nilpotent orbits
- Finite *W*-algebras fit in quite nicely with this picture.

- g is a semisimple finite dimensional complex Lie algebra.
- Question: What are the simple g-modules?
- Easier question: What are the primitive ideals of U(g)? (An ideal in some algebra is *primitive* if it is the annihilator of a simple module).
- Duflo: Every primitive ideal in *U*(g) is equal to the annihilator of a simple highest weight module.
- Joseph: If *I* is a primitive ideal $U(\mathfrak{g})$ then the associated variety $\mathcal{VA}(I) = \overline{G \cdot e}$, the closure of a nilpotent orbit. $(\mathcal{VA}(I) = Z(I)$, when we consider *I* to be contained in $S(\mathfrak{g}^*) = \mathbb{C}[\mathfrak{g}]$.)
- In summary:

 $\{\text{simple } g\text{-modules}\} \twoheadrightarrow \text{Prim } U(g) \twoheadrightarrow \{\text{nilpotent orbits}\}.$

• Finite *W*-algebras fit in quite nicely with this picture.

- g is a semisimple finite dimensional complex Lie algebra.
- Question: What are the simple g-modules?
- Easier question: What are the primitive ideals of U(g)? (An ideal in some algebra is *primitive* if it is the annihilator of a simple module).
- Duflo: Every primitive ideal in *U*(g) is equal to the annihilator of a simple highest weight module.
- Joseph: If *I* is a primitive ideal $U(\mathfrak{g})$ then the associated variety $\mathcal{VA}(I) = \overline{G \cdot e}$, the closure of a nilpotent orbit. $(\mathcal{VA}(I) = Z(I)$, when we consider *I* to be contained in $S(\mathfrak{g}^*) = \mathbb{C}[\mathfrak{g}]$.)

 In summary: {simple g-modules} → Prim U(g) → {nilpotent orbits}.

• Finite *W*-algebras fit in quite nicely with this picture.

- g is a semisimple finite dimensional complex Lie algebra.
- Question: What are the simple g-modules?
- Easier question: What are the primitive ideals of U(g)? (An ideal in some algebra is *primitive* if it is the annihilator of a simple module).
- Duflo: Every primitive ideal in *U*(g) is equal to the annihilator of a simple highest weight module.
- Joseph: If *I* is a primitive ideal $U(\mathfrak{g})$ then the associated variety $\mathcal{VA}(I) = \overline{G \cdot e}$, the closure of a nilpotent orbit. $(\mathcal{VA}(I) = Z(I)$, when we consider *I* to be contained in $S(\mathfrak{g}^*) = \mathbb{C}[\mathfrak{g}]$.)
- In summary: {simple g-modules} --> Prim U(g) --> {nilpotent orbits}.
- Finite *W*-algebras fit in quite nicely with this picture.

- g is a semisimple finite dimensional complex Lie algebra.
- Question: What are the simple g-modules?
- Easier question: What are the primitive ideals of U(g)? (An ideal in some algebra is *primitive* if it is the annihilator of a simple module).
- Duflo: Every primitive ideal in *U*(g) is equal to the annihilator of a simple highest weight module.
- Joseph: If *I* is a primitive ideal $U(\mathfrak{g})$ then the associated variety $\mathcal{VA}(I) = \overline{G \cdot e}$, the closure of a nilpotent orbit. $(\mathcal{VA}(I) = Z(I)$, when we consider *I* to be contained in $S(\mathfrak{g}^*) = \mathbb{C}[\mathfrak{g}]$.)
- In summary: {simple g-modules} --> Prim U(g) --> {nilpotent orbits}.
- Finite *W*-algebras fit in quite nicely with this picture.

 ${f S}: egin{array}{c} U({rak g},0)=U({rak g})\ U({rak g},e_{\mathsf{reg}})\cong Z({rak g}) \ ({ ext{Kostant}}) \end{array}$

- In general we can think of U(g, e) as living somewhere between Z(g) and U(g).
- $Z(\mathfrak{g})$ embeds into $U(\mathfrak{g}, e)$ and the center of $U(\mathfrak{g}, e)$ is $Z(\mathfrak{g})$.
- $U(\mathfrak{g}, e)$ is a deformation of $U(\mathfrak{g}^e)$ (and also of $S(\mathfrak{g}^e)$), where $\mathfrak{g}^e = \{x \in \mathfrak{g} \mid [x, e] = 0\}.$

Extreme cases: $U(\mathfrak{g}, 0) = U(\mathfrak{g})$ $U(\mathfrak{g}, e_{reg}) \cong Z(\mathfrak{g})$ (Kostant)

- In general we can think of U(g, e) as living somewhere between Z(g) and U(g).
- $Z(\mathfrak{g})$ embeds into $U(\mathfrak{g}, e)$ and the center of $U(\mathfrak{g}, e)$ is $Z(\mathfrak{g})$.
- $U(\mathfrak{g}, e)$ is a deformation of $U(\mathfrak{g}^e)$ (and also of $S(\mathfrak{g}^e)$), where $\mathfrak{g}^e = \{x \in \mathfrak{g} \mid [x, e] = 0\}.$

Extreme cases: $U(\mathfrak{g}, 0) = U(\mathfrak{g})$ $U(\mathfrak{g}, e_{reg}) \cong Z(\mathfrak{g})$ (Kostant)

- In general we can think of U(g, e) as living somewhere between Z(g) and U(g).
- $Z(\mathfrak{g})$ embeds into $U(\mathfrak{g}, e)$ and the center of $U(\mathfrak{g}, e)$ is $Z(\mathfrak{g})$.
- $U(\mathfrak{g}, e)$ is a deformation of $U(\mathfrak{g}^e)$ (and also of $S(\mathfrak{g}^e)$), where $\mathfrak{g}^e = \{x \in \mathfrak{g} \mid [x, e] = 0\}.$

Extre

 A finite W-algebra is denoted U(g, e) where e is a nilpotent element of g.

me cases:
$$egin{array}{c} U({\mathfrak g},0)=U({\mathfrak g})\ U({\mathfrak g},e_{\mathsf{reg}})\cong Z({\mathfrak g}) \ ({\sf Kostant}) \end{array}$$

- In general we can think of U(g, e) as living somewhere between Z(g) and U(g).
- $Z(\mathfrak{g})$ embeds into $U(\mathfrak{g}, e)$ and the center of $U(\mathfrak{g}, e)$ is $Z(\mathfrak{g})$.
- $U(\mathfrak{g}, e)$ is a deformation of $U(\mathfrak{g}^e)$ (and also of $S(\mathfrak{g}^e)$), where $\mathfrak{g}^e = \{x \in \mathfrak{g} \mid [x, e] = 0\}.$

Extreme cases: $U(\mathfrak{g}, 0) = U(\mathfrak{g})$ $U(\mathfrak{g}, e_{reg}) \cong Z(\mathfrak{g})$ (Kostant)

- In general we can think of U(g, e) as living somewhere between Z(g) and U(g).
- $Z(\mathfrak{g})$ embeds into $U(\mathfrak{g}, e)$ and the center of $U(\mathfrak{g}, e)$ is $Z(\mathfrak{g})$.
- $U(\mathfrak{g}, e)$ is a deformation of $U(\mathfrak{g}^e)$ (and also of $S(\mathfrak{g}^e)$), where $\mathfrak{g}^e = \{x \in \mathfrak{g} \mid [x, e] = 0\}.$

Definition of finite W algebra U(g, e)

- Start with nilpotent e ∈ g. By Jacobson-Morozov Theorem, e embeds in to st₂-triple (e, h, f).
- Let (.,.) denote a non-degenerate equivariant symmetric bilinear form on g.
- \mathfrak{sl}_2 representation theory implies that $\mathfrak{g} = \bigoplus_{i \in \mathbb{Z}} \mathfrak{g}(i)$, where $\mathfrak{g}(i) = \{x \in \mathfrak{g} \mid [h, x] = ix\}.$
- Define $\chi : \mathfrak{g}(\leq -1) \rightarrow \mathbb{C}$ via $\chi(m) = (e, m)$.
- Let $\mathfrak{m} = \mathfrak{g}(\geq 0) \oplus \mathfrak{l}$, let $\mathfrak{n} = \mathfrak{g}(<-1) \oplus \mathfrak{l}^{\perp}$.
- Let *I* be the left ideal of U(𝔅) generated by {m − χ(m) | m ∈ 𝔅}.

•
$$U(\mathfrak{g}, e) = (U(\mathfrak{g})/I)^{\mathfrak{n}} = \{u + I \in U(\mathfrak{g})/I \mid [\mathfrak{n}, u] \subseteq I\}$$

• $U(\mathfrak{g})/I$ is a $(U(\mathfrak{g}), U(\mathfrak{g}, e))$ -bimodule, so there exists a functor $S : U(\mathfrak{g}, e)$ -mod $\rightarrow U(\mathfrak{g})$ -mod, $V \mapsto U(\mathfrak{g})/I \otimes_{U(\mathfrak{g}, e)} V$. A result of Skryabin says that S is a categorical equivalence between $U(\mathfrak{g}, e)$ -mod and *Whittaker modules for e*, ie modules on which $m - \chi(m)$ acts locally nilpotently for all $m \in \mathfrak{m}$.

Losev has defined a map

 \cdot^{\dagger} : Prim $U(\mathfrak{g}, e) \rightarrow$ Prim $U(\mathfrak{g})$.

• This map restricts to a surjection:

 $\cdot^{\dagger} : \operatorname{Prim}_{\operatorname{fd}} U(\mathfrak{g}, e) \twoheadrightarrow \operatorname{Prim}_{\overline{G \cdot e}} U(\mathfrak{g}).$

- The fibers of this map are Γ -orbits, where $\Gamma = G^e/(G^e)^\circ$.
- This suggests that the finite dimensional representation theory of U(g, e) should be able to tell us something about the infinite dimensional representation theory of U(g).

- $U(\mathfrak{g})/I$ is a $(U(\mathfrak{g}), U(\mathfrak{g}, e))$ -bimodule, so there exists a functor $S: U(\mathfrak{g}, e)$ -mod $\rightarrow U(\mathfrak{g})$ -mod, $V \mapsto U(\mathfrak{g})/I \otimes_{U(\mathfrak{g}, e)} V$. A result of Skryabin says that S is a categorical equivalence between $U(\mathfrak{g}, e)$ -mod and *Whittaker modules for e*, ie modules on which $m \chi(m)$ acts locally nilpotently for all $m \in \mathfrak{m}$.
- Losev has defined a map

```
\cdot^{\dagger}: \operatorname{Prim} U(\mathfrak{g}, e) 
ightarrow \operatorname{Prim} U(\mathfrak{g}).
```

• This map restricts to a surjection:

 $\cdot^{\dagger} : \operatorname{Prim}_{\operatorname{fd}} U(\mathfrak{g}, e) \twoheadrightarrow \operatorname{Prim}_{\overline{G \cdot e}} U(\mathfrak{g}).$

- The fibers of this map are Γ -orbits, where $\Gamma = G^e/(G^e)^\circ$.
- This suggests that the finite dimensional representation theory of U(g, e) should be able to tell us something about the infinite dimensional representation theory of U(g).

- $U(\mathfrak{g})/I$ is a $(U(\mathfrak{g}), U(\mathfrak{g}, e))$ -bimodule, so there exists a functor $S: U(\mathfrak{g}, e)$ -mod $\rightarrow U(\mathfrak{g})$ -mod, $V \mapsto U(\mathfrak{g})/I \otimes_{U(\mathfrak{g}, e)} V$. A result of Skryabin says that S is a categorical equivalence between $U(\mathfrak{g}, e)$ -mod and *Whittaker modules for e*, ie modules on which $m \chi(m)$ acts locally nilpotently for all $m \in \mathfrak{m}$.
- Losev has defined a map

```
\cdot^{\dagger}: \operatorname{Prim} U(\mathfrak{g}, e) \to \operatorname{Prim} U(\mathfrak{g}).
```

• This map restricts to a surjection:

$$\cdot^{\dagger}: \operatorname{Prim}_{\operatorname{fd}} U(\mathfrak{g}, e) \twoheadrightarrow \operatorname{Prim}_{\overline{G \cdot e}} U(\mathfrak{g}).$$

- The fibers of this map are Γ -orbits, where $\Gamma = G^e/(G^e)^\circ$.
- This suggests that the finite dimensional representation theory of U(g, e) should be able to tell us something about the infinite dimensional representation theory of U(g).

- $U(\mathfrak{g})/I$ is a $(U(\mathfrak{g}), U(\mathfrak{g}, e))$ -bimodule, so there exists a functor $S: U(\mathfrak{g}, e)$ -mod $\rightarrow U(\mathfrak{g})$ -mod, $V \mapsto U(\mathfrak{g})/I \otimes_{U(\mathfrak{g}, e)} V$. A result of Skryabin says that S is a categorical equivalence between $U(\mathfrak{g}, e)$ -mod and *Whittaker modules for e*, ie modules on which $m \chi(m)$ acts locally nilpotently for all $m \in \mathfrak{m}$.
- Losev has defined a map

```
\cdot^{\dagger}: Prim U(\mathfrak{g}, e) \rightarrow Prim U(\mathfrak{g}).
```

• This map restricts to a surjection:

 $\cdot^{\dagger} : \operatorname{Prim}_{\operatorname{fd}} U(\mathfrak{g}, e) \twoheadrightarrow \operatorname{Prim}_{\overline{G \cdot e}} U(\mathfrak{g}).$

- The fibers of this map are Γ -orbits, where $\Gamma = G^e/(G^e)^\circ$.
- This suggests that the finite dimensional representation theory of U(g, e) should be able to tell us something about the infinite dimensional representation theory of U(g).

- $U(\mathfrak{g})/I$ is a $(U(\mathfrak{g}), U(\mathfrak{g}, e))$ -bimodule, so there exists a functor $S: U(\mathfrak{g}, e)$ -mod $\rightarrow U(\mathfrak{g})$ -mod, $V \mapsto U(\mathfrak{g})/I \otimes_{U(\mathfrak{g}, e)} V$. A result of Skryabin says that S is a categorical equivalence between $U(\mathfrak{g}, e)$ -mod and *Whittaker modules for e*, ie modules on which $m \chi(m)$ acts locally nilpotently for all $m \in \mathfrak{m}$.
- Losev has defined a map

```
\cdot^{\dagger}: Prim U(\mathfrak{g}, e) \rightarrow Prim U(\mathfrak{g}).
```

• This map restricts to a surjection:

 $\cdot^{\dagger}: \operatorname{Prim}_{\operatorname{fd}} U(\mathfrak{g}, e) \twoheadrightarrow \operatorname{Prim}_{\overline{G \cdot e}} U(\mathfrak{g}).$

- The fibers of this map are Γ -orbits, where $\Gamma = G^e/(G^e)^\circ$.
- This suggests that the finite dimensional representation theory of U(g, e) should be able to tell us something about the infinite dimensional representation theory of U(g).

- Ideals in U(g) and nilpotent orbits can be induced from Levi subalgebras of g.
- Let g' be a Levi subalgebra of g. Let p be a parabolic subalgebra of g such that p = g' ⊕ u for some nilpotent subalgebra u.
- If O' is a nilpotent orbit in g', then the O is the orbit induced from O' is the unique nilpotent orbit in g such that O ∩ (O' + u) is open in O' + u.
- If *I*' is an ideal of g', then we define the induced ideal *I*^g_{g'}(*I*') to be the largest two-sided ideal of *U*(g) which contained in the left ideal *U*(g)(u + *I*').
- If $I' = \operatorname{Ann}_{U(\mathfrak{g}')}(M')$ for some simple \mathfrak{g}' -module M', then $\mathcal{I}^{\mathfrak{g}}_{\mathfrak{g}'}(I') = \operatorname{Ann}_{U(\mathfrak{g})}(U(\mathfrak{g}) \otimes_{U(\mathfrak{p})} M')$
- Even if *I*' is primitive, $\mathcal{I}_{\mathfrak{q}'}^{\mathfrak{g}}(I')$ need not be.
- However if I' is a completely prime primitive ideal, then I^g_{g'}(I') will be as well.

- Ideals in U(g) and nilpotent orbits can be induced from Levi subalgebras of g.
- Let g' be a Levi subalgebra of g. Let p be a parabolic subalgebra of g such that p = g' ⊕ u for some nilpotent subalgebra u.
- If O' is a nilpotent orbit in g', then the O is the orbit induced from O' is the unique nilpotent orbit in g such that O ∩ (O' + u) is open in O' + u.
- If *I*' is an ideal of g', then we define the induced ideal *I*^g_{g'}(*I*') to be the largest two-sided ideal of *U*(g) which contained in the left ideal *U*(g)(u + *I*').
- If $I' = \operatorname{Ann}_{U(\mathfrak{g}')}(M')$ for some simple \mathfrak{g}' -module M', then $\mathcal{I}^{\mathfrak{g}}_{\mathfrak{g}'}(I') = \operatorname{Ann}_{U(\mathfrak{g})}(U(\mathfrak{g}) \otimes_{U(\mathfrak{p})} M')$
- Even if *I*' is primitive, $\mathcal{I}_{\mathfrak{q}'}^{\mathfrak{g}}(I')$ need not be.
- However if I' is a completely prime primitive ideal, then I^g_{g'}(I') will be as well.

- Ideals in U(g) and nilpotent orbits can be induced from Levi subalgebras of g.
- Let g' be a Levi subalgebra of g. Let p be a parabolic subalgebra of g such that p = g' ⊕ u for some nilpotent subalgebra u.
- If O' is a nilpotent orbit in g', then the O is the orbit induced from O' is the unique nilpotent orbit in g such that O ∩ (O' + u) is open in O' + u.
- If *I*' is an ideal of g', then we define the induced ideal *I*^g_{g'}(*I*') to be the largest two-sided ideal of *U*(g) which contained in the left ideal *U*(g)(u + *I*').
- If $I' = \operatorname{Ann}_{U(\mathfrak{g}')}(M')$ for some simple \mathfrak{g}' -module M', then $\mathcal{I}^{\mathfrak{g}}_{\mathfrak{g}'}(I') = \operatorname{Ann}_{U(\mathfrak{g})}(U(\mathfrak{g}) \otimes_{U(\mathfrak{p})} M')$
- Even if *I*' is primitive, $\mathcal{I}_{\mathfrak{q}'}^{\mathfrak{g}}(I')$ need not be.
- However if I' is a completely prime primitive ideal, then I^g_{g'}(I') will be as well.

- Ideals in U(g) and nilpotent orbits can be induced from Levi subalgebras of g.
- Let g' be a Levi subalgebra of g. Let p be a parabolic subalgebra of g such that p = g' ⊕ u for some nilpotent subalgebra u.
- If O' is a nilpotent orbit in g', then the O is the orbit induced from O' is the unique nilpotent orbit in g such that O ∩ (O' + u) is open in O' + u.
- If *l'* is an ideal of g', then we define the induced ideal *I*^g_{g'}(*l'*) to be the largest two-sided ideal of *U*(g) which contained in the left ideal *U*(g)(u + *l'*).
- If $I' = \operatorname{Ann}_{U(\mathfrak{g}')}(M')$ for some simple \mathfrak{g}' -module M', then $\mathcal{I}^{\mathfrak{g}}_{\mathfrak{g}'}(I') = \operatorname{Ann}_{U(\mathfrak{g})}(U(\mathfrak{g}) \otimes_{U(\mathfrak{p})} M')$
- Even if *I*' is primitive, $\mathcal{I}^{\mathfrak{g}}_{\mathfrak{q}'}(I')$ need not be.
- However if I' is a completely prime primitive ideal, then I^g_{g'}(I') will be as well.

- Ideals in U(g) and nilpotent orbits can be induced from Levi subalgebras of g.
- Let g' be a Levi subalgebra of g. Let p be a parabolic subalgebra of g such that p = g' ⊕ u for some nilpotent subalgebra u.
- If O' is a nilpotent orbit in g', then the O is the orbit induced from O' is the unique nilpotent orbit in g such that O ∩ (O' + u) is open in O' + u.
- If *I*' is an ideal of g', then we define the induced ideal *I*^g_{g'}(*I*') to be the largest two-sided ideal of *U*(g) which contained in the left ideal *U*(g)(u + *I*').
- If $I' = \operatorname{Ann}_{U(\mathfrak{g}')}(M')$ for some simple \mathfrak{g}' -module M', then $\mathcal{I}^{\mathfrak{g}}_{\mathfrak{g}'}(I') = \operatorname{Ann}_{U(\mathfrak{g})}(U(\mathfrak{g}) \otimes_{U(\mathfrak{p})} M')$
- Even if *I*' is primitive, $\mathcal{I}^{\mathfrak{g}}_{\mathfrak{a}'}(I')$ need not be.
- However if I' is a completely prime primitive ideal, then I^g_{g'}(I') will be as well.

- Ideals in U(g) and nilpotent orbits can be induced from Levi subalgebras of g.
- Let g' be a Levi subalgebra of g. Let p be a parabolic subalgebra of g such that p = g' ⊕ u for some nilpotent subalgebra u.
- If O' is a nilpotent orbit in g', then the O is the orbit induced from O' is the unique nilpotent orbit in g such that O ∩ (O' + u) is open in O' + u.
- If *I*' is an ideal of g', then we define the induced ideal *I*^g_{g'}(*I*') to be the largest two-sided ideal of *U*(g) which contained in the left ideal *U*(g)(u + *I*').
- If $I' = \operatorname{Ann}_{U(\mathfrak{g}')}(M')$ for some simple \mathfrak{g}' -module M', then $\mathcal{I}^{\mathfrak{g}}_{\mathfrak{g}'}(I') = \operatorname{Ann}_{U(\mathfrak{g})}(U(\mathfrak{g}) \otimes_{U(\mathfrak{p})} M')$
- Even if l' is primitive, $\mathcal{I}^{\mathfrak{g}}_{\mathfrak{q}'}(l')$ need not be.
- However if I' is a completely prime primitive ideal, then I^g_{g'}(I') will be as well.

- Ideals in U(g) and nilpotent orbits can be induced from Levi subalgebras of g.
- Let g' be a Levi subalgebra of g. Let p be a parabolic subalgebra of g such that p = g' ⊕ u for some nilpotent subalgebra u.
- If O' is a nilpotent orbit in g', then the O is the orbit induced from O' is the unique nilpotent orbit in g such that O ∩ (O' + u) is open in O' + u.
- If *l'* is an ideal of g', then we define the induced ideal *I*^g_{g'}(*l'*) to be the largest two-sided ideal of *U*(g) which contained in the left ideal *U*(g)(u + *l'*).
- If $I' = \operatorname{Ann}_{U(\mathfrak{g}')}(M')$ for some simple \mathfrak{g}' -module M', then $\mathcal{I}^{\mathfrak{g}}_{\mathfrak{g}'}(I') = \operatorname{Ann}_{U(\mathfrak{g})}(U(\mathfrak{g}) \otimes_{U(\mathfrak{p})} M')$
- Even if *I*' is primitive, $\mathcal{I}^{\mathfrak{g}}_{\mathfrak{q}'}(I')$ need not be.
- However if I' is a completely prime primitive ideal, then \$\mathcal{I}_{g'}^g(I')\$ will be as well.

Completely prime and multiplicity-free primitive ideals

• An ideal *I* in *U*(g) is *completely prime* if *U*(g)/*I* has no zero-divisors.

- The classification of completely prime primitive ideals of U(g) is still an open problem outside of type A.
- Outside of type A, not every completely prime primitive ideal can be induced from a proper Levi subalgebra.
- However Premet and Topley have shown nearly every *multiplicity free* primitive ideal can be induced.

Completely prime and multiplicity-free primitive ideals

- An ideal *I* in U(g) is completely prime if U(g)/I has no zero-divisors.
- The classification of completely prime primitive ideals of $U(\mathfrak{g})$ is still an open problem outside of type A.
- Outside of type A, not every completely prime primitive ideal can be induced from a proper Levi subalgebra.
- However Premet and Topley have shown nearly every *multiplicity free* primitive ideal can be induced.

Completely prime and multiplicity-free primitive ideals

- An ideal *I* in U(g) is completely prime if U(g)/I has no zero-divisors.
- The classification of completely prime primitive ideals of U(g) is still an open problem outside of type A.
- Outside of type A, not every completely prime primitive ideal can be induced from a proper Levi subalgebra.
- However Premet and Topley have shown nearly every *multiplicity free* primitive ideal can be induced.

- An ideal *I* in *U*(g) is *completely prime* if *U*(g)/*I* has no zero-divisors.
- The classification of completely prime primitive ideals of $U(\mathfrak{g})$ is still an open problem outside of type A.
- Outside of type A, not every completely prime primitive ideal can be induced from a proper Levi subalgebra.
- However Premet and Topley have shown nearly every *multiplicity free* primitive ideal can be induced.

- Let *ε* denote the variety of 1-dimensional *U*(g, e)-modules, and let *ε*^Γ denote Γ-invariant elements of *ε*.
- Premet has shown that under Skryabin's equivalence, elements of \mathcal{E} correspond to completely prime primitive ideals in $U(\mathfrak{g})$.
- Premet and Losev have shown that under Skryabin's equivalence, elements of \mathcal{E}^{Γ} bijectively correspond to *multiplicity free completely prime primitive ideals* in $U(\mathfrak{g})$.

- Let *ε* denote the variety of 1-dimensional *U*(g, *e*)-modules, and let *ε*^Γ denote Γ-invariant elements of *ε*.
- Premet has shown that under Skryabin's equivalence, elements of \mathcal{E} correspond to completely prime primitive ideals in $U(\mathfrak{g})$.
- Premet and Losev have shown that under Skryabin's equivalence, elements of \mathcal{E}^{Γ} bijectively correspond to *multiplicity free completely prime primitive ideals* in $U(\mathfrak{g})$.

- Let *ε* denote the variety of 1-dimensional *U*(g, *e*)-modules, and let *ε*^Γ denote Γ-invariant elements of *ε*.
- Premet has shown that under Skryabin's equivalence, elements of \mathcal{E} correspond to completely prime primitive ideals in $U(\mathfrak{g})$.
- Premet and Losev have shown that under Skryabin's equivalence, elements of \mathcal{E}^{Γ} bijectively correspond to *multiplicity free completely prime primitive ideals* in $U(\mathfrak{g})$.

Theorem (Premet, Topley)

Let \mathfrak{g} be any semi-simple Lie algebra, and let $e \in \mathfrak{g}$ be an induced nilpotent element. Let $n = \dim(\mathfrak{g}^e/[\mathfrak{g}^e, \mathfrak{g}^e])^{\Gamma}$. If $(\mathfrak{g}, G \cdot e)$ is not one of the six cases listed below, then $\mathcal{E}^{\Gamma} \cong \mathbb{C}^n$.

Corollary (Premet, Topley)

If $I \subseteq U(\mathfrak{g})$ is a multiplicity free primitive ideal whose associated variety is induced from nilpotent orbit in a proper Levi subalgebra and is not one of the six cases listed below, then I is induced from an ideal in a proper Levi subalgebra.

Bala-Carter labels of unresolved cases: (F₄,C₃(a₁)), (E₆, A₃+A₁), (E₇, D₆(a₂)), (E₈,E₆(a₃) + A₁), (E₈, D₆(a₂)), (E₈, E₇(a₂)), (E₈, E₇(a₅)).

Theorem (Premet, Topley)

Let \mathfrak{g} be any semi-simple Lie algebra, and let $e \in \mathfrak{g}$ be an induced nilpotent element. Let $n = \dim(\mathfrak{g}^e/[\mathfrak{g}^e, \mathfrak{g}^e])^{\Gamma}$. If $(\mathfrak{g}, G \cdot e)$ is not one of the six cases listed below, then $\mathcal{E}^{\Gamma} \cong \mathbb{C}^n$.

Corollary (Premet, Topley)

If $I \subseteq U(\mathfrak{g})$ is a multiplicity free primitive ideal whose associated variety is induced from nilpotent orbit in a proper Levi subalgebra and is not one of the six cases listed below, then I is induced from an ideal in a proper Levi subalgebra.

Bala-Carter labels of unresolved cases: (F₄,C₃(a₁)), (E₆, A₃+A₁), (E₇, D₆(a₂)), (E₈,E₆(a₃) + A₁), (E₈, D₆(a₂)), (E₈, E₇(a₂)), (E₈, E₇(a₅)).

Theorem (Premet, Topley)

Let \mathfrak{g} be any semi-simple Lie algebra, and let $e \in \mathfrak{g}$ be an induced nilpotent element. Let $n = \dim(\mathfrak{g}^e/[\mathfrak{g}^e, \mathfrak{g}^e])^{\Gamma}$. If $(\mathfrak{g}, G \cdot e)$ is not one of the six cases listed below, then $\mathcal{E}^{\Gamma} \cong \mathbb{C}^n$.

Corollary (Premet, Topley)

If $I \subseteq U(\mathfrak{g})$ is a multiplicity free primitive ideal whose associated variety is induced from nilpotent orbit in a proper Levi subalgebra and is not one of the six cases listed below, then I is induced from an ideal in a proper Levi subalgebra.

Bala-Carter labels of unresolved cases: (F₄,C₃(a₁)), (E₆, A₃+A₁), (E₇, D₆(a₂)), (E₈,E₆(a₃) + A₁), (E₈, D₆(a₂)), (E₈, E₇(a₂)), (E₈, E₇(a₅)).

- Except for the 6 cases listed above, Premet and Topley calculated *ε^Γ* for all induced nilpotent orbits in semi-simple finite dimensional Lie algebras.
- Our goal: Use computers to calculate *E*, as well as *E*^Γ in the cases Premet and Topley did not do.
- This is only feasible in low rank.

- Except for the 6 cases listed above, Premet and Topley calculated *ε^Γ* for all induced nilpotent orbits in semi-simple finite dimensional Lie algebras.
- Our goal: Use computers to calculate *E*, as well as *E*^Γ in the cases Premet and Topley did not do.

• This is only feasible in low rank.

- Except for the 6 cases listed above, Premet and Topley calculated *ε^Γ* for all induced nilpotent orbits in semi-simple finite dimensional Lie algebras.
- Our goal: Use computers to calculate *E*, as well as *E*^Γ in the cases Premet and Topley did not do.
- This is only feasible in low rank.

Results

Туре	Orbit	Г	ε	\mathcal{E}^{Γ}
C ₂	(2,2)	<i>S</i> ₂	$\mathbb{C} \sqcup \mathbb{C} / \mathbb{C}^{0}$	\mathbb{C}
C ₃	(4,2)	S_2	$\mathbb{C}^2 \sqcup \mathbb{C}^2 / \mathbb{C}$	\mathbb{C}^2
B ₃	(5,1,1)	S_2	$\mathbb{C}^2 \sqcup \mathbb{C}^2 / \mathbb{C}$	\mathbb{C}^2
C_4	(4,2,2)	S_2	$\mathbb{C}^2 \sqcup \mathbb{C}/\mathbb{C}^0$	\mathbb{C}^2
C_4	(6,2)	S_2	$\mathbb{C}^3 \sqcup \mathbb{C}^3 / \mathbb{C}^2$	\mathbb{C}^3
B ₄	(7,1,1)	S_2	$\mathbb{C}^3 \sqcup \mathbb{C}^3 / \mathbb{C}^2$	\mathbb{C}^3
			Three \mathbb{C}^2 's which	
B ₄	(5,3,1)	$S_2 imes S_2$	intersect at a point and	\mathbb{C}^2
			pairwise intersect at lines	
D_4	(3,3,1,1)	S_2	$\mathbb{C}^2 \sqcup \mathbb{C}/\mathbb{C}^0$	\mathbb{C}
G ₂	G ₂ (a ₁)	S_3	$\mathbb{C} \sqcup \mathbb{C} \sqcup \mathbb{C} \sqcup \mathbb{C} / \mathbb{C}^{0}$	\mathbb{C}
F_4	C ₃ (a ₁)	S_2	$\mathbb{C} \sqcup \mathbb{C}^0 \sqcup \mathbb{C}^0 \sqcup \mathbb{C}^0$	$\mathbb{C} \sqcup \mathbb{C}^{0}$
F_4	F ₄ (a ₁)	S_2	$\mathbb{C}^3 \sqcup \mathbb{C}^3 / \mathbb{C}^2$	\mathbb{C}^3
F_4	$F_4(a_2)$	S_2	$\mathbb{C}^2 \sqcup \mathbb{C}^2 / \mathbb{C}$	\mathbb{C}^2
F_4	F ₄ (a ₃)	S_4	$\left(\left(\bigsqcup_{i=1}^{5} \mathbb{C}\right) \sqcup \left(\bigsqcup_{i=1}^{3} \mathbb{C}^{2}\right)\right) / \mathbb{C}^{0}$	\mathbb{C}
E_6	$A_3 + A_1$	1	$\square \square \square \square \square \square \square$	$\mathbb{C} \sqcup \mathbb{C}^{0}$
E ₆	$E_{6}(a_{3})$	S_2	$\mathbb{C}^4 \sqcup \mathbb{C}^3 / \mathbb{C}^2$	\mathbb{C}^3
E ₆	$D_4(a_1)$	S_3	$\mathbb{C}^2 \sqcup \mathbb{C}^2 \sqcup \mathbb{C}^2 \sqcup \mathbb{C}^2 \sqcup \mathbb{C}/\mathbb{C}^0$	\mathbb{C}

Jonathan Brown (joint work with Simon Goodwin)

Primitive ideals and finite W-algebras of low rank

Theorem (B., Goodwin)

Let \mathfrak{g} be of type F_4 and \mathcal{O} with Bala–Carter label $C_3(a_1)$, or let \mathfrak{g} be of type E_6 and \mathcal{O} with Bala–Carter label $A_3 + A_1$. Then there is a multiplicity free primitive ideal of $U(\mathfrak{g})$ with associated variety $\overline{\mathcal{O}}$ that cannot be induced from a primitive ideal of $U(\mathfrak{g}')$ for any proper Levi subalgebra \mathfrak{g}' of \mathfrak{g} .