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Primitive ideals and associated varieties

g is a semisimple finite dimensional complex Lie algebra.
Question: What are the simple g-modules?
Easier question: What are the primitive ideals of U(g)?
(An ideal in some algebra is primitive if it is the annihilator of a
simple module).
Duflo: Every primitive ideal in U(g) is equal to the annihilator of a
simple highest weight module.
Joseph: If I is a primitive ideal U(g) then the associated variety
VA(I) = G · e, the closure of a nilpotent orbit.
(VA(I) = Z (I), when we consider I to be contained in
S(g∗) = C[g].)
In summary:
{simple g-modules}� Prim U(g) � {nilpotent orbits}.
Finite W -algebras fit in quite nicely with this picture.
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Finite W -algebras

A finite W -algebra is denoted U(g,e) where e is a nilpotent
element of g.

Extreme cases: U(g,0) = U(g)
U(g,ereg) ∼= Z (g) (Kostant)

In general we can think of U(g,e) as living somewhere between
Z (g) and U(g).
Z (g) embeds into U(g,e) and the center of U(g,e) is Z (g).
U(g,e) is a deformation of U(ge) (and also of S(ge)), where
ge = {x ∈ g | [x ,e] = 0}.
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Definition of finite W algebra U(g,e)

Start with nilpotent e ∈ g. By Jacobson-Morozov Theorem, e
embeds in to sl2-triple (e,h, f ).
Let (·, ·) denote a non-degenerate equivariant symmetric bilinear
form on g.
sl2 representation theory implies that g =

⊕
i∈Z g(i), where

g(i) = {x ∈ g | [h, x ] = ix}.
Define χ : g(≤ −1)→ C via χ(m) = (e,m).
Let l be a maximal isotropic subspace of g(−1) under the form
〈x , y〉 = χ([x , y ]), and let l⊥ be the complementary maximal
isotropic subspace
Let m = g(≥ 0)⊕ l, let n = g(< −1)⊕ l⊥.
Let I be the left ideal of U(g) generated by {m − χ(m) | m ∈ m}.
U(g,e) = (U(g)/I)n = {u + I ∈ U(g)/I | [n,u] ⊆ I}
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Representation theory of finite W -algebras

U(g)/I is a (U(g),U(g,e))-bimodule, so there exists a functor
S : U(g,e)-mod→ U(g)-mod, V 7→ U(g)/I ⊗U(g,e) V . A result of
Skryabin says that S is a categorical equivalence between
U(g,e)-mod and Whittaker modules for e, ie modules on which
m − χ(m) acts locally nilpotently for all m ∈ m.
Losev has defined a map

·† : Prim U(g,e)→ Prim U(g).

This map restricts to a surjection:

·† : Primfd U(g,e) � PrimG·e U(g).

The fibers of this map are Γ-orbits, where Γ = Ge/(Ge)◦.
This suggests that the finite dimensional representation theory of
U(g,e) should be able to tell us something about the infinite
dimensional representation theory of U(g).
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Induction of ideals and orbits

Ideals in U(g) and nilpotent orbits can be induced from Levi
subalgebras of g.
Let g′ be a Levi subalgebra of g. Let p be a parabolic subalgebra
of g such that p = g′ ⊕ u for some nilpotent subalgebra u.
If O′ is a nilpotent orbit in g′, then the O is the orbit induced from
O′ is the unique nilpotent orbit in g such that O ∩ (O′ + u) is open
in O′ + u.
If I′ is an ideal of g′, then we define the induced ideal Igg′(I′) to be
the largest two-sided ideal of U(g) which contained in the left
ideal U(g)(u + I′).
If I′ = AnnU(g′)(M ′) for some simple g′-module M ′, then
Igg′(I′) = AnnU(g)(U(g)⊗U(p) M ′)

Even if I′ is primitive, Igg′(I′) need not be.

However if I′ is a completely prime primitive ideal, then Igg′(I′) will
be as well.
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Completely prime and multiplicity-free primitive ideals

An ideal I in U(g) is completely prime if U(g)/I has no
zero-divisors.
The classification of completely prime primitive ideals of U(g) is
still an open problem outside of type A.
Outside of type A, not every completely prime primitive ideal can
be induced from a proper Levi subalgebra.
However Premet and Topley have shown nearly every multiplicity
free primitive ideal can be induced.
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Completely prime primitive ideals and 1-dimensional
U(g,e)-modules

Let E denote the variety of 1-dimensional U(g,e)-modules, and
let EΓ denote Γ-invariant elements of E .
Premet has shown that under Skryabin’s equivalence, elements
of E correspond to completely prime primitive ideals in U(g).
Premet and Losev have shown that under Skryabin’s
equivalence, elements of EΓ bijectively correspond to multiplicity
free completely prime primitive ideals in U(g).
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Completely prime primitive ideals and 1-dimensional
U(g,e)-modules

Theorem (Premet,Topley)

Let g be any semi-simple Lie algebra, and let e ∈ g be an induced
nilpotent element. Let n = dim(ge/[ge, ge])Γ. If (g,G · e) is not one of
the six cases listed below, then EΓ ∼= Cn.

Corollary (Premet,Topley)

If I ⊆ U(g) is a multiplicity free primitive ideal whose associated
variety is induced from nilpotent orbit in a proper Levi subalgebra and
is not one of the six cases listed below, then I is induced from an ideal
in a proper Levi subalgebra.

Bala-Carter labels of unresolved cases: (F4,C3(a1)), (E6, A3+A1),
(E7, D6(a2)), (E8,E6(a3) + A1), (E8, D6(a2)), (E8, E7(a2)), (E8,
E7(a5)).
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in a proper Levi subalgebra.

Bala-Carter labels of unresolved cases: (F4,C3(a1)), (E6, A3+A1),
(E7, D6(a2)), (E8,E6(a3) + A1), (E8, D6(a2)), (E8, E7(a2)), (E8,
E7(a5)).
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Our contribution

Except for the 6 cases listed above, Premet and Topley
calculated EΓ for all induced nilpotent orbits in semi-simple finite
dimensional Lie algebras.
Our goal: Use computers to calculate E , as well as EΓ in the
cases Premet and Topley did not do.
This is only feasible in low rank.
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Results
Type Orbit Γ E EΓ

C2 (2,2) S2 C t C/C0 C
C3 (4,2) S2 C2 t C2/C C2

B3 (5,1,1) S2 C2 t C2/C C2

C4 (4,2,2) S2 C2 t C/C0 C2

C4 (6,2) S2 C3 t C3/C2 C3

B4 (7,1,1) S2 C3 t C3/C2 C3

B4 (5,3,1) S2 × S2

Three C2’s which
intersect at a point and

pairwise intersect at lines
C2

D4 (3,3,1,1) S2 C2 t C/C0 C
G2 G2(a1) S3 C t C t C t C/C0 C
F4 C3(a1) S2 C t C0 t C0 t C0 C t C0

F4 F4(a1) S2 C3 t C3/C2 C3

F4 F4(a2) S2 C2 t C2/C C2

F4 F4(a3) S4

((⊔5
i=1 C

)
t
(⊔3

i=1 C2
))

/C0 C
E6 A3 + A1 1 C t C0 C t C0

E6 E6(a3) S2 C4 t C3/C2 C3

E6 D4(a1) S3 C2 t C2 t C2 t C2 t C/C0 C
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Results

Theorem (B., Goodwin)

Let g be of type F4 and O with Bala–Carter label C3(a1), or let g be of
type E6 and O with Bala–Carter label A3 + A1. Then there is a
multiplicity free primitive ideal of U(g) with associated variety O that
cannot be induced from a primitive ideal of U(g′) for any proper Levi
subalgebra g′ of g.
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